Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(4): e26323, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404824

RESUMO

The integration of photovoltaic technologies within the agricultural framework, known as agrivoltaics, emerges as a promising and sustainable solution to meet the growing global demands for energy and food production. This innovative technology enables the simultaneous utilization of sunlight for both photovoltaics (PV) and photosynthesis. A key challenge in agrivoltaic research involves identifying technologies applicable to a wide range of plant species and diverse geographic regions. To address this challenge, we adopt a multi-experimental and multi-species approach to assess the viability of semi-transparent, spectrally selective thin-film silicon PV technology. Our findings demonstrate compatibility with crop production in controlled environments for both plants and algae. Notably, selective thin-film PV exhibits the potential to enhance crop yields and serves as a photo-protectant. We observe that plant and algal growth increases beneath the selective PV film when supplemented with appropriate diffuse light in the growth environment. Conversely, in situations where light intensity exceeds optimal levels for plant growth, the selective PV film provides a photo-protective effect. These results suggest potential supplementary benefits of employing this technology in regions characterized by excessive light irradiation, where it can contribute to healthy plant growth.

2.
Chemosphere ; 345: 140400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863212

RESUMO

Highly efficient, separable, and stable magnetic iron-based-photocatalysts produced from ultra-stable Y (USY) zeolite were applied, for the first time, to the photo-Fenton removal of phenol under solar light. USY Zeolite with a Si/Al molar ratio of 385 was impregnated under vacuum with an aqueous solution of Fe2+ ions and thermally treated (500-750 °C) in a reducing atmosphere. Three catalysts, Fe-USY500°C-2h, Fe-USY600°C-2h and Fe-USY750°C-2h, containing different amounts of reduced iron species entrapped in the zeolitic matrix, were obtained. The catalysts were thoroughly characterized by absorption spectrometry, X-ray powder diffraction with synchrotron source, followed by Rietveld analysis, X-ray photoelectron spectroscopy, N2 adsorption/desorption at -196 °C, high-resolution transmission electron microscopy and magnetic measurements at room temperature. The catalytic activity was evaluated in a recirculating batch photoreactor irradiated by solar light with online analysis of evolved CO2. Photo-Fenton results showed that the catalyst obtained by thermal treatment at 500 °C for 2 h under a reducing atmosphere (FeUSY-500°C-2h) was able to completely mineralize phenol in 120 min of irradiation time at pH = 4 owing to the presence of a higher content of entrapped nano-sized magnetite particles. The latter promotes the generation of hydroxyl radicals in a more efficient way than the Fe-USY catalysts prepared at 600 and 750 °C because of the higher Fe3O4 content in ultra-stable Y zeolite treated at 500 °C. The FeUSY-500°C-2h catalyst was recovered from the treated water through magnetic separation and reused five times without any significant worsening of phenol mineralization performances. The characterization of the FeUSY-500°C-2h after the photo-Fenton process demonstrated that it was perfectly stable during the reaction. The optimized catalyst was also effective in the mineralization of phenol in tap water. Finally, a possible photo-Fenton mechanism for phenol mineralization was assessed based on experimental tests carried out in the presence of scavenger molecules, demonstrating that hydroxyl radicals play a major role.


Assuntos
Fenol , Zeolitas , Fenol/química , Ferro/química , Fenóis , Água , Peróxido de Hidrogênio/química , Catálise
3.
Nanomaterials (Basel) ; 13(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36678023

RESUMO

A reverse-micelle sol-gel method was chosen for the preparation of Fe-doped TiO2 samples that were employed in the photodegradation of the crystal violet dye under visible light irradiation in a batch reactor. The dopant amount was varied to assess the optimal photocatalyst composition towards the target dye degradation. The photocatalysts were characterized through a multi-technique approach, envisaging XRPD and QPA as obtained by Rietveld refinement, FE-SEM analysis, DR UV-vis spectroscopy, N2 adsorption/desorption isotherms measurement at -196 °C, ζ-potential measurement, and XPS analysis. The physical-chemical characterization showed that the adopted synthesis method allows obtaining NPs with uniform shape and size and promotes the introduction of Fe into the titania matrix, finally affecting the relative amounts of the three occurring polymorphs of TiO2 (anatase, rutile and brookite). By increasing the Fe content, the band gap energy decreases from 3.13 eV (with undoped TiO2) to 2.65 eV (with both 2.5 and 3.5 wt.% nominal Fe contents). At higher Fe content, surface Fe oxo-hydroxide species occur, as shown by DR UV-vis and XP spectroscopies. All the Fe-doped TiO2 photocatalysts were active in the degradation and mineralization of the target dye, showing a TOC removal higher than the undoped sample. The photoactivity under visible light was ascribed both to the band-gap reduction (as confirmed by phenol photodegradation) and to dye sensitization of the photocatalyst surface (as confirmed by photocatalytic tests carried out using different visible-emission spectra LEDs). The main reactive species involved in the dye degradation were determined to be positive holes.

4.
Plants (Basel) ; 11(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36015467

RESUMO

Lettuce plants were grown in a greenhouse affected by the fungal pathogen Fusarium oxysporum to test the effects on plant metabolomics by different organic treatments. Three foliar application treatments were applied: a commercial compost tea made of aerobically fermented plant organic matter, a pure lyophilized microalga Artrospira platensis, commonly named spirulina, and the same microalga previously exposed during its culture to a natural uptake from medium enriched with F. oxysporum fragmented DNA (NAT). The experiment is the first attempt to observe in field conditions, the use and effects of a natural microbial library as a carrier of pathogenic fungal DNA for disease control. Untargeted NMR metabolomics and chemometrics showed that foliar organic application significantly reduced fumaric and formic acids, aromatic amino acids, and nucleosides, while increasing ethanolamine. A strong decrease in phenolic acids and an increase in citric acid and glutamine were specifically observed in the NAT treatment. It is noteworthy that the exposure of a known biostimulant microalga to fungal DNA in its culture medium was sufficient to induce detectable changes in the metabolomic profiles of the fertilized plants. These findings deserve further investigation to assess the potential relevance of the presented approach in the field of crop biostimulation and biocontrol of plant pathogens.

5.
Sci Total Environ ; 842: 156840, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750183

RESUMO

In this work, the performance of a vertical multiplate photobioreactor is analyzed and presented. The photobioreactor consisted of 20 vertical plates (1 m2 each) connected by manifolds and a working volume of 1300 L. The total area occupied (footprint) was 10 m2, while the illuminated area was 40 m2, therefore the ratio of illuminated area to volume ratio was about 30 m-1. The performance of the photobioreactor was evaluated using a culture of Synechocystis PCC 6803, circulated by a centrifuge pump. The results showed that the amount of light captured by the photobioreactor at a plate spacing of 0.5 m was 90.2 % of the light incident on the horizontal surface, while at a plate spacing of 1.0 m, 50.3 % was captured. The corresponding biomass yield, calculated based on the ground area occupied by the reactor, was 26.0 g m-2 day-1 and 7.2 g m-2 day-1, when the plates were spaced at 0.5 m and 1.0 m respectively. Therefore, the light conversion efficiency calculated based on the ground area was significantly higher in the configuration with a plate spacing of 0.5 m, reaching 5.43 % based on PAR (photosynthetically active radiation), and 2.44 % based on solar radiation, giving a value 3.7 higher than when the plates were spaced 1.0 m apart. It was concluded that the light conversion efficiency might be further improved by reducing the plate spacing while also reducing the culture light path.


Assuntos
Microalgas , Energia Solar , Synechocystis , Biomassa , Fotobiorreatores
6.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335307

RESUMO

Hybrid tannic acid-silica-based porous nanoparticles, TA-SiO2 NPs, have been synthesized under mild conditions in the presence of green and renewable tannic acid biopolymer, a glycoside polymer of gallic acid present in a large part of plants. Tannic acid (TA) was exploited as both a structuring directing agent and green chelating site for heavy metal ions recovery from aqueous solutions. Particles morphologies and porosity were easily tuned by varying the TA initial amount. The sample produced with the largest TA amount showed a specific surface area an order of magnitude larger than silica nanoparticles. The adsorption performance was investigated by using TA-SiO2 NPs as adsorbents for copper (II) ions from an aqueous solution. The effects of the initial Cu2+ ions concentration and the pH values on the adsorption capability were also investigated. The resulting TA-SiO2 NPs exhibited a different adsorption behaviour towards Cu2+, which was demonstrated through different tests. The largest adsorption (i.e., ~50 wt% of the initial Cu2+ amount) was obtained with the more porous nanoplatforms bearing a higher final TA content. The TA-nanoplatforms, stable in pH value around neutral conditions, can be easily produced and their use would well comply with a green strategy to reduce wastewater pollution.


Assuntos
Metais Pesados , Nanopartículas , Adsorção , Nanopartículas/química , Dióxido de Silício/química , Taninos/química
7.
J Environ Manage ; 310: 114701, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217443

RESUMO

Three tailor-made magnetic metal-ceramic nanocomposites, obtained from zeolite A (ZA1 and ZA2) and a natural clinoptilolite (LB1), have been used as adsorbents to remove sulfanilamide (SA), a sulfonamide antibiotic of common use, from water. A patented process for the synthesis of nanocomposites has been suitably modified to maximize the efficiency of the SA removal, as well as to extend the applicability of the materials. The role played by the main process parameters (kinetic, pH, initial concentration of SA) has been characterized. The significant effect of the pH on the SA removal has been explained identifying two possibly coexisting mechanisms of SA adsorption, based on polar and hydrophobic interactions, respectively. The adsorption kinetics have been in all cases described by the pseudo second-order model. The adsorption isotherms obtained with ZA1 have been satisfactorily described by the Langmuir model, suggesting a monolayer adsorption of SA on the magnetic nanocomposites resulting from a uniform surface energy. The isotherms obtained with LB1 could be described by a more complex approach, deriving by the additive superposition of Langmuir and Sips models. In order to ensure an effective removal of the antibiotic and a proper recycle of the magnetic adsorbents, a sustainable regeneration procedure of the exhausted adsorbent has been developed, based on the treatment with a dilute solution of NaOH.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cerâmica , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Nanocompostos/química , Sulfanilamida , Poluentes Químicos da Água/química , Purificação da Água/métodos
8.
ACS Omega ; 6(38): 24562-24574, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604638

RESUMO

MnO x -TiO2 catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH3-SCR (selective catalytic reduction) of NO x have been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO2 sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N2 isotherm measurement at -196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV-vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol-gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH3-SCR activity in terms of both NO x conversion (ca. 90%) and the amount of produced N2O (ca. 50 ppm) in the 200-250 °C temperature range.

9.
Materials (Basel) ; 14(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198890

RESUMO

Fe-doped titania photocatalysts (with 1, 2.5, and 3.5 wt. % Fe nominal content), showing photocatalytic activity under visible light, were prepared by a soft-template assisted sol-gel approach in the presence of the triblock copolymer Pluronic P123. An undoped TiO2 photocatalyst was also prepared for comparison. The photocatalysts were characterized by means of X-ray powder Diffraction (XRPD), Quantitative Phase Analysis as obtained by Rietveld refinement, Diffuse Reflectance (DR) UV-Vis spectroscopy, N2 adsorption/desorption at -196 °C, electrophoretic mobility in water (ζ-potential), and X-ray photoelectron spectroscopy (XPS). The physico-chemical characterization showed that all the samples were 100% anatase phase and that iron was present both in the bulk and at the surface of the Fe-doped TiO2. Indeed, the band gap energy (Eg) decreases with the Fe content, with Tauc's plot determined values ranging from 3.35 (undoped TiO2) to 2.70 eV (3.5 wt. % Fe). Notwithstanding the obtained Eg values, the photocatalytic activity results under visible light highlighted that the optimal Fe content was equal to 2.5 wt. % (Tauc's plot determined Eg = 2.74 eV). With the optimized photocatalyst and in selected operating conditions, under visible light it was possible to achieve 90% AO7 discoloration together with a TOC removal of 40% after 180 min. The kinetic behavior of the photocatalyst was also analyzed. Moreover, the tests in the presence of three different scavengers revealed that the main reactive species are (positive) holes and superoxide species. Finally, the optimized photocatalyst was also able to degrade phenol under visible light.

10.
ACS Omega ; 6(8): 5379-5388, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33681577

RESUMO

Six Mo/TiO2 samples (with 0, 1.0, 2.5, 5.0, 7.5, and 10 wt % Mo nominal contents) were obtained by reverse micelle sol-gel synthesis, followed by calcination at 500 °C. The samples were characterized by means of powder X-ray Diffraction (PXRD), quantitative phase analysis as obtained by Rietveld refinement, field-emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray analysis, N2 adsorption/desorption at -196 °C, X-ray photoelectron spectroscopy, and diffuse reflectance (DR) UV-vis spectroscopy. As a whole, the adopted characterization techniques showed the inclusion of a sizeable Mo amount, without the segregation of any MoO x phase. Specifically, PXRD showed the occurrence of anatase and brookite with all the studied samples; notwithstanding the mild calcination temperature, the formation of rutile occurred at Mo wt % ≥2.5 likely due to the presence of brookite favoring, in turn, anatase to rutile transition. DR UV-vis and XP spectroscopies allowed determining the samples' band gap energy (E g) and valence band energy, respectively, from which the conduction band energy was calculated; and the observed E g value increase at 10 wt % Mo was ascribed to the Moss-Burstein effect.

11.
Materials (Basel) ; 14(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572587

RESUMO

Flame spray pyrolysis was used to produce nanosized Ni-based catalysts starting from different mixed oxides. LaNiO3 and CeNiO3 were used as base materials and the formulation was varied by mixing them or incorporating variable amounts of ZrO2 or SrO during the synthesis. The catalysts were tested for the steam reforming of glycerol. One of the key problems for this application is the resistance to deactivation by sintering and coking, which may be increased by (1) improving Ni dispersion through the production of a Ni-La or Ni-Ce mixed oxide precursor, and then reduced; (2) using an oxide as ZrO2, which established a strong interaction with Ni and possesses high thermal resistance; (3) decreasing the surface acidity of ZrO2 through a basic promoter/support, such as La2O3; and (4) adding a promoter/support with very high oxygen mobility such as CeO2. A further key feature is the use of a high temperature synthesis, such as flame spray pyrolysis, to improve the overall thermal resistance of the oxides. These strategies proved effective to obtain active and stable catalysts at least for 20 h on stream with very limited coke formation.

12.
ChemistryOpen ; 9(9): 903-912, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908812

RESUMO

Different sol-gel synthesis methods were used to obtain four nanostructured mesoporous TiO2 samples for an efficient photocatalytic degradation of the emerging contaminant N-phenylurea under either simulated solar light (1 Sun) or UV light. Particularly, two TiO2 samples were obtained by means of as many template-assisted syntheses, whereas other two TiO2 samples were obtained by a greener template-free procedure, implying acidic conditions and, then, calcination at either 200 °C or 600 °C. In one case, anatase was obtained, whereas in the other three cases mixed crystalline phases were obtained. The four TiO2 samples were characterized by X-ray powder diffraction (followed by Rietveld analysis); Transmission Electron Microscopy; N2 adsorption/desorption at -196 °C; Diffuse Reflectance UV/Vis spectroscopy and ζ-potential measurements. A commercial TiO2 powder (i. e., Degussa P25) was used for comparison. Differences among the synthesized samples were observed not only in their quantitative phase composition, but also in their nanoparticles morphology (shape and size), specific surface area, pore size distribution and pHIEP (pH at isoelectric point), whereas the samples band-gap did not vary sizably. The samples showed different photocatalytic behavior in terms of N-phenylurea degradation, which are ascribed to their different physico-chemical properties and, especially, to their phase composition, stemming from the different synthesis conditions.

13.
Molecules ; 25(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295314

RESUMO

In this work, three novel magnetic metal-ceramic nanocomposites were obtained by thermally treating Fe-exchanged zeolites (either A or X) under reducing atmosphere at relatively mild temperatures (750-800 °C). The so-obtained materials were thoroughly characterized from the point of view of their physico-chemical properties and, then, used as magnetic adsorbents in the separation of the target gene factors V and RNASE and of the Staphylococcus aureus bacteria DNA from human blood. Such results were compared with those obtained by using a top ranking commercial separation system (namely, SiMAG-N-DNA by Chemicell). The results obtained by using the novel magnetic adsorbents were similar to (or even better than) those obtained by using the commercial system, both during manual and automated separations, provided that a proper protocol was adopted. Particularly, the novel magnetic adsorbents showed high sensitivity during tests performed with small volumes of blood. Finally, the feasible production of such magnetic adsorbents by an industrial process was envisaged as well.


Assuntos
Biomarcadores/análise , Biomarcadores/sangue , Fracionamento Químico/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocompostos/química , Zeolitas/química , Fenômenos Químicos , Humanos , Temperatura , Difração de Raios X
14.
Materials (Basel) ; 12(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901826

RESUMO

TiO2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol⁻gel method allowing the dispersion of Mo atoms in the TiO2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N2 adsorption/desorption isotherms at -196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV⁻Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoOx species occurring only at a higher Mo content.

15.
Materials (Basel) ; 12(4)2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813441

RESUMO

The sol-gel method is an attractive synthetic approach in the design of advanced catalytic formulations that are based on metal and metal oxide with high degree of structural and compositional homogeneity. Nowadays, though it originated with the hydrolysis and condensation of metal alkoxides, sol-gel chemistry gathers plenty of fascinating strategies to prepare materials from solution state precursors. Low temperature chemistry, reproducibility, and high surface to volume ratios of obtained products are features that add merit to this technology. The development of different and fascinating procedure was fostered by the availability of new molecular precursors, chelating agents and templates, with the great advantage of tailoring the physico-chemical properties of the materials through the manipulation of the synthesis conditions. The aim of this review is to present an overview of the "traditional" sol-gel synthesis of tailored and multifunctional inorganic materials and their application in the main domain of heterogeneous catalysis. One of the main achievements is to stress the versatility of sol-gel preparation by highlighting its advantage over other preparation methods through some specific examples of the synthesis of catalysts.

16.
J Biomed Nanotechnol ; 13(3): 337-48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29381292

RESUMO

In this work, metal-ceramic nanocomposites were obtained through short (up to 2 h) thermal treatments at relatively moderate temperatures (750­800 °C) under a reducing atmosphere, using Fe-exchanged zeolite A as the precursor. The as-obtained materials were characterized by X-ray powder diffraction analysis, N2 adsorption at ­196 °C, and highresolution transmission electron microscopy. The results of these analyses showed that the nanocomposites consisted of a dispersion of metallic Fe nanoparticles within a porous ceramic matrix, mainly based on amorphous silica and alumina. These nanocomposites were magnetically characterized, and their magnetic response was studied. Finally, the obtained metal-ceramic nanocomposite materials were used in the separation of Escherichia coli DNA from a crude cell lysate. The results of the DNA separation experiments showed that the obtained materials could perform this type of separation.


Assuntos
DNA Bacteriano/isolamento & purificação , DNA Bacteriano/efeitos da radiação , Separação Imunomagnética/métodos , Nanocompostos/química , Nanocompostos/ultraestrutura , Ultrafiltração/métodos , Zeolitas/química , DNA Bacteriano/química , Campos Magnéticos , Teste de Materiais , Ligas Metalo-Cerâmicas/química , Nanocompostos/efeitos da radiação , Nanoporos/ultraestrutura , Tamanho da Partícula , Porosidade
17.
J Vis Exp ; (117)2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911418

RESUMO

The goal of the protocol is to synthesize Fe-doped aluminosilicate nanotubes of the imogolite type with the formula (OH)3Al2-xFexO3SiOH. Doping with Fe aims at lowering the band gap of imogolite, an insulator with the chemical formula (OH)3Al2O3SiOH, and at modifying its adsorption properties towards azo-dyes, an important class of organic pollutants of both wastewater and groundwater. Fe-doped nanotubes are obtained in two ways: by direct synthesis, where FeCl3 is added to an aqueous mixture of the Si and Al precursors, and by post-synthesis loading, where preformed nanotubes are put in contact with a FeCl3•6H2O aqueous solution. In both synthesis methods, isomorphic substitution of Al3+ by Fe3+ occurs, preserving the nanotube structure. Isomorphic substitution is indeed limited to a mass fraction of ~1.0% Fe, since at a higher Fe content (i.e., a mass fraction of 1.4% Fe), Fe2O3 clusters form, especially when the loading procedure is adopted. The physicochemical properties of the materials are studied by means of X-ray powder diffraction (XRD), N2 sorption isotherms at -196 °C, high resolution transmission electron microscopy (HRTEM), diffuse reflectance (DR) UV-Vis spectroscopy, and ζ-potential measurements. The most relevant result is the possibility to replace Al3+ ions (located on the outer surface of the nanotubes) by post-synthesis loading on preformed imogolite without perturbing the delicate hydrolysis equilibria occurring during nanotube formation. During the loading procedure, an anionic exchange occurs, where Al3+ ions on the outer surface of the nanotubes are replaced by Fe3+ ions. In Fe-doped aluminosilicate nanotubes, isomorphic substitution of Al3+ by Fe3+ is found to affect the band gap of doped imogolite. Nonetheless, Fe3+ sites on the outer surface of nanotubes are able to coordinate organic moieties, like the azo-dye Acid Orange 7, through a ligand-displacement mechanism occurring in an aqueous solution.


Assuntos
Compostos Férricos , Nanotubos , Elétrons , Microscopia Eletrônica de Transmissão , Difração de Raios X
18.
Rev Sci Instrum ; 87(3): 035119, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036831

RESUMO

In recent years, there has been a renewed interest in the impact of turbulence on aquatic organisms. In response to this interest, a novel instrument has been constructed, TURBOGEN, that generates turbulence in water volumes up to 13 l. TURBOGEN is fully computer controlled, thus, allowing for a high level of reproducibility and for variations of the intensity and characteristics of turbulence during the experiment. The calibration tests, carried out by particle image velocimetry, showed TURBOGEN to be successful in generating isotropic turbulence at the typical relatively low levels of the marine environment. TURBOGEN and its sizing have been devised with the long-term scope of analyzing in detail the molecular responses of plankton to different mixing regimes, which is of great importance in both environmental and biotechnological processes.


Assuntos
Computadores , Hidrodinâmica , Plâncton , Calibragem , Desenho de Equipamento , Cinética , Água
19.
Environ Technol ; 37(19): 2428-34, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26852791

RESUMO

The removal of simazine from both pure water and solute-bearing well water was studied by adsorption on two solids: zeolite H-Y from the commercial Na form and porous silica tailored by the sol-gel technique. The pH dependence of the amount adsorbed in a closed system at constant total simazine content as well as the apparent isotherms of adsorption was measured in all four cases. The low ion content of natural water suffices to alter the adsorption features in the case of silica, but not with zeolite H-Y. Iteration of the adsorption process onto constant amounts of solid allowed bringing the residual simazine concentration below 0.05 mg/L, the value allowed by Italian laws in wastewaters.


Assuntos
Simazina/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Itália , Porosidade , Dióxido de Silício/química , Simazina/análise , Simazina/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Zeolitas/química
20.
Phys Chem Chem Phys ; 17(43): 28950-7, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26456488

RESUMO

The simple means adopted for investigating H-Y zeolite acidity in water is the pH-dependence of the amount of a basic molecule adsorbed under isochoric conditions, a technique capable of yielding, under equilibrium conditions, an estimate of the pKa value of the involved acidic centres: the behaviour with temperature of adsorbed amounts yields instead some information on thermodynamics. Simazine (Sim, 2-chloro-4,6-bis(ethylamino)-s-triazine) was chosen as an adsorbate because its transverse dimension (7.5 Å) is close to the opening of the supercage in the faujasite structure of H-Y (7.4 Å). In short term measurements, Sim adsorption at 25 °C occurs only at the outer surface of H-Y particles. Two types of mildly acidic centres are present (with pKaca. 7 and ca. 8, respectively) and no strong one is observed. Previous adsorption of ammonia from the gas phase discriminates between the two. The former survives, and shows features common with the silanols of amorphous silica. The latter is suppressed: because of this and other features distinguishing this site from silanol species (e.g. the formation of dimeric Sim2H(+) species, favoured by coverage and unfavoured by temperatures of adsorption higher than ambient temperature) a candidate is an Al based site. We propose a Lewis centre coordinating a water molecule, exhibiting acidic properties. This acidic water molecule can be replaced by the stronger base ammonia, also depleting inner strong Brønsted sites. A mechanism for the generation of the two sites from surface Brønsted species is proposed. Long term adsorption measurements at 25 °C already show the onset of the interaction with inner strongly acidic Brønsted sites: because of its size, activation is required for Sim to pass the supercage openings and reach inner acidic sites. When adsorption is run at 40-50 °C, uptake is much larger and increases with temperature. Isochoric measurements suggest a pKa value of ca. 3 compatible with its marked acidic nature, although attainment of equilibrium conditions is questionable. Measurements at 60 °C (both isochors and DRIFT) show the onset of changes at the outer surface brought about by the presence of hot water. Control experiments run with USY (Ultra Stabilized zeolite Y), featuring wormholes and cavities rendering accessible internal sites, show the extensive involvement of internal Brønsted sites already at 25 °C.


Assuntos
Ácidos/química , Zeolitas/química , Adsorção , Concentração de Íons de Hidrogênio , Simazina/química , Propriedades de Superfície , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...